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Department of Mathematical Sciences
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t ~ABSTRACT . -

In a multiple interval intersection representation of a graph it
is required that at least one interval from each of a pair of adja-
cent vertices intersect. It is permitted for there to be several such
intersect:onslvrn though )iese additional intersections are

2 Asuperfiuous 'or, bredundant .By disallowing such redundancies
one arrives at the concept of an irredundrmt multiple interval
representation. -W show5 that these irredundant representations
can be much more inetAcient than representations which allow
redundancies. Finally, hwthat even when some redundancy
is permitted, the inefficieny remains.
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Irredundancy in Multiple Interval Representations

Edward R. Scheinerman

Department of Mathematical Sciences
Johns Hopkins University

Baltimore, Maryland 21218 .4.-"

* 1. Introduction
Interval graphs are well known: they are the graphs to whose vertices one

can assign real intervals such that vertices are adjacent if and only if their inter-

vals intersect. Recently. multiple interval graphs have been studied [1-7].

A t -interval is the union of t real closed intervals and a t -interval graph

is the intersection graph of t-intervals. Stated differently, a graph is a

t -interval graph if to each vertex of the graph one can assign (up to) f real '.--

intervals so that two vertices are adjacent if and only if some interval assigned

to one vertex intersects an interval assigned to the second.

We introduce some notation. Let tI denote the family of all t-intervals:

tI = J[ai,b1]u[a2.b2]U U[aibt]: a.<bi,lgit .-

Notice that the intervals need not be distinct nor disjoint. Thus t Ic(t + 1)I for all

t. We write v'-w when vertices v and w are adjacent. Then a t-interval graph is

one with a t -interval representation:

f:V(G)-tI-

where v -w ifff (v)nf (w) 4.-

Every graph is a t-interval graph for t sufficiently large. One defines the

interval number of a graph G, denoted i(G). to be the least t for which G is a "."

t-interval graph. Interval graphs are precisely those graphs. G. with i(G)=1.

Given a t-interval representation of a graph G, it is possible for several P'

intervals assigned to one vertex to meet several intervals assigned to one of its

mR ._,.",L_ L-" " ... . ... . . e _. . . . .. . . .
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neighbors. Only one such intersection is required; the others are permitted but

are, in some sense, superfluous or redundant. The aim of this paper is to study

the effect redundancy has on multiple interval representations of graphs.

A t-interval representation, f: V(G)4tl, is called irredundant if for all va,'w

with '-w, f (u)'f ( is an interval. The irredundant interval numbsr of G,

denoted io(G), is the least integer t such that G has an irredundant f-interval

representation. The subscript "0" indicates that no redundancy is allowed.

Clearly i0(G)'!i(G) since irredundant representations are themselves

representations. Small examples suggest that i0 (G)=i(G) and it would be rea-

sonable to conjecture this equality always holds because representing edges

with more than one interval-interval intersection would "waste" intervals that

could be used to represent other edges. However, we show in the next section

how to construct graphs with io(G)=i(G)+I. One is then led to ask how different

the parameters i and i0 can be. After several technical results in section 3 we

show, in section 4, that io(G) can be arbitrary while i(G)=2.

2. A First Example

If i(G)=1 then it is immediate that i 0(G)=i. We show in this section:

Theorem 1. For every integer t>1 there exists a graph G with i(G)=t and

i0 (G)=t+i"

To prove this we use the concept of tightness introduced in [7].

A graph G is called t-tight provided that for every t-interval representa-

tion, f:V(G)-otI, one has U f(v) is an interval. In other words, in G's t- L
V EV(G)

interval representation there can be no "gaps". If G is t-tight, one readily • .-

verifies that i(G)-t.

%4

Lemma 1 [7]. The complete bipartite graph K2z+1.2t-, is t-tight..

* . . . . .. ... . . .
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Also. it can be shown that any vertex can appear as the "first" interval

(ordered by left endpoint) in a t-interval representation of Kz2. 1.P._.[#]

Proof of Theorem 1. Let t>1 be an integer. Construct a graph G consisting of 2t

disjoint copies of K 2s4.l,2t-, each with a distinguished vertex, plus two additional

vertices, z and y. Join x to y with an edge, and join both of them to each of the _

distinguished vertices in the 2t copies of K2 &+1.2 t- 1. See Figure 1.

One now checks that i(G)-t by consulting Figure 2. Since Kz&+s #-1 is f- --

tight, its intervals must cover an unbroken portion of the real line. Thus in any

t-interval representation of G the K2 ,+1.2t9 -I' cover 2t intervals on the real line.

In order for z to meet the appropriate distinguished vertices we must put t

intervals in the gaps between the first and second, third and fourth, etc. copies

of K2t 12t-8- Likewise for y. We now see that edge xy is represented "t times"; -

no irredundant t-interval representation of G is possible. Hence io(G) -f +1. It is

easy to give a simple construction to show that i 0 (G)=t+1.-

Thus the parameters i 0 and i are not equal, yet intuitively one might expect

them to be close. However, this is not even remotely correct. In the next sec-

tion we present some technical material we use in section 4 where we show that

io(G) can be arbitrarily large while i(G)=2.

3. Two Lemmas

In this section we present two results which we use repeatedly to prove the

main theorem. The first concerns multiple interval representations of complete

graphs and the second is a "probabilistic" pigeon hole result.

Let f:V(G)-,tl be a t-interval representations of a graph G and let z be a

point on the real line. The depth of the representations at x is the number of

vertices assigned to intervals containing x:

depth(x) I JvV(G): x Cf(v)l

-. ----------

. . . . . . . . . . . . .. . . . . . . . . . : ..'- . i . . _ .. .., -' _ . . . . . . . . . . . . ..::> .- i - .--- ._:_..::: .:::- "- -5- :-::: -:' : -". ..- .- ,- . .
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The epthof th r.t raesenao is the largest such number:

The depth of a 1-interval representation of a complete graph. 1,4is n; this

* is Helly's theorem. For multiple interval representations we have:

Lemma 2. The depth of a i-interval representation of a complete graph K,

exceeds

Proof. Let f :(V(K;))-vtl be a i-interval representation for K, and let

r=depth(f. Without loss of generality we may assume that all end points of all

* the ntervls in are distinct. Each left end point of an interval in r is cn

tained in at most r-l other intervals. Since there are at most ni intervals in f

and for each edge of K,, there is a left end point of an interval contained in

another interval. we have:

E(. (r -1)nt

* hence:

n-i T
r -*__+ 1>2

Next we present a "probabilistic" pigeon hole result:

Lemma 3. Let Oc<1 and 6= 2 Let C(l).C(2).. .C(p)) be disjoint finite sets

each of cardinality g , and let C(*) denote their union. Suppose S is a subset of

C(*) with IS I ? I C(s) =rpq. Then the number of indices k f or which: 4

ISflC(k)1 61 C~k)I &Z (1)
is at least 6p. In symbols:

I.............I.........I.......6..........
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In "pigeon language", the C(k) represent the equal capacity pigeon holes

and S represents the pigeons. If the coop is moderately full ("c%") then a fair :'. .

number of holes ("5%") are fairly full ("n%").

Proof of the lemma. Suppose fewer than 6p of the C~k) satisfy (1). That means

that up to 5p-1 of the C(k) can have "a lot" (but at most q-I C(k)I) of their ele-

ments in S while the remaining p -6p + I C(c )'s can have at most 6q -1 elements

in S. Thus.

Isl (6p-1)q + (p-6p+1)(6q-1) =

< 26pq = Epq.

But IS I rpq by hypothesis."

4. Main Result

We now present and prove the principal result of this paper.

Theorem 2. For every positive integer t there exists a graph G with i(G)=2 and .

io0(G)>t.

Proof. We explicitly construct the graphs G. For positive integers n.m ,q define

a graph G(n~i.m;q) as follows. The vertices of G(nn.;q) are triples of integers

(i,j;k) with l:i9n, ljggm and lgkq, i.e.,

V(G(n, .g)) = n1. ••• xil, . ••.lx l1. - - .mxl.-

We put (i,j;k)-(i,j';k') if and only if i=i' or Y=j'. (Notice that the entry in the

third coordinate does not matter.) See figure 3.

If n and in are both greater than 1, then

(1,1;1)-(1,2;1)-(2,2;1)-(2,;1)-(1,1;1) is an induced 4-cycle and hence

*" G(nm;gq) is not an interval graph. Therefore i(G(n.v;q))z2. We now show that V

its interval number is exactly 2 by explicitly constructing a representation. -"-'"..

: ~~~~~~~~~~~~~~. ... ............ . .... .--....-. ..-.............-.........- .. v."..':"'



Define f:V(G(n~m;q))1-21 by .

f 0 J:) It= -

It is easy to check that f is a 2-interval representation of G(n,m.;q). (Notice .

that f is highly redundant. Every edge of the form (i.j:k)(i~j;k') is represented

twice.)

Pick an integer t>1. We show that for suitable n~ma.g0 we have '
io(G(n~ma;qo))>t. Here suitable with entail. .t <n<<m0<q 0 . In particular we -

take

nL 12t

=2(4t)".

Let G0=G(nmo:q0). Observe that for all i and j the set of vertices

C0(i.j)=j(ij~k): 1--k~qoj induces a clique containing q0 vertices. Also

C0(i.*)=Co(i.1)U ... UCo(i~mo) induces a clique containing mog0 vertices and

C0Q.j)=Co(l.j)U .. U Co(n~j) induces a clique containing nqo vertices.L

Suppose io(Go)&t. Fix an irredundant i-interval representation f for Go. .-

*Let r= ~Land let 6L Consider the clique C0 (,*). By lemma 2 its representa-22t

tion in fhas depth at least (in fact exceeding) I a1*JThus some
2t =C~ 0

point x I on the real line is contained in intervals for at least emog0 vertices of

C0(i,*). We call the intervals assigned to vertices of U0(.') which contain the

point x, a stack and denote the collection S(x1 ). If a vertex in C0(1,*) has an

* interval in the stack S(x 1) we call that interval primary and the remaining t -1

intervals secondary. We now apply lemma 3. Observer that r(moqo) of the ver-

tices in C0(l.*) have a (primary) interval in S(zj). Therefore at least dm.0 of the

* cliques C0(lIJ) have at least dqo vertices with (primary) intervals in S(xl). We

may assumne, after appropriate relabeling, that this is true for cliques
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Cc(',1),.' . ,C0 (.6ma) and that vertices (1,j;k) with 1-9j 6M o and l_!k.!6q 0o

have primary intervals in S(x 1 ), i.e. x 1 Ef (i,j;k).

We now restrict our attention to an induced subgraph G, of G0 . Put

m=$zrm0 , q 1=oq 0 and G1=G(n.m1 ;q1 ). (Notice that we do not alter f but res-

trict it to V(GI).) By analogy we define Cl(i,j), C1(i,*) and CI(*,J). Notice that,

by our analysis, all vertices in C(i.*) have a (primary) interval contained in

S(x). We now repeat the above argument for C(2.*): There exists a point x2 on

the real line and, after suitable relabeling, for 1-:-j=m and :9kr6q1 we have

zx:f (2J, ;k). We call the intervals assigned to vertices in Cl(2.) which contain

z 2 stack S(x 2 ). The designations "primary" and "secondary" are clear in this

context.

Put m 2 =6dm and q92 =q 1 . We let G2=G(n,m2 ;q2 ) and note that it has the

property that all vertices in C2(1,*) and C2 (2.0) have primary intervals in stacks

S(zl) and S(x 2 ) respectively.

We now continue to define G3 , G4 , etc. After n iterations we have

M=7n=6nm0=2 and q=q,=6nqo=St. Put G=G=G( , m;q). For all i=l, n.

we know that the mg vertices in C(i,*)=C,(i,*) have primary intervals contain-

ing the point x.. Thus for all (i,j;k) E V(G) we have xiEf (ij;k).

Suppose vertices v and w are in clique C(i,*). Their primary intervals

intersect: xtE f (v)flf (w). Since f is irredundant, their 2(t-1) secondary inter-

vals must be disjoint.

Without loss of generality, we may assume 1<X2< •... <zn. We now claim

that no primary interval containing xi can contain xi' for any i';i: otherwise

there would be a vertex v adjacent to all vertices in both C(i,s) and C(i',*).

This implies that vcC(i,*) since ifv=(i",j;k) with V"'i then (since m=2) there

exists j'$j and (i",jk) is not adjacent to (i.j';k)EC(i,*). The same reasoning

shows acC(i',) but c(i,)fC(',*)-0 and the claim follows. We now may

- - - - - - - - - - - - - - -- - - - - -.-



-.- .... o

conclude that if Ii--4I>1 then the primary intervals for (i,j;k) and (i'.j';k') are

disjoint. Primary intervals from non-consecutive stacks cannot meet.

Finally, consider the clique C(*.,). It has nq vertices. By the usual argu-

ment there exists a point y on the real line containing enq intervals from

C(*,1). Moreover, at least 6n of the cliques C(i.1) have at least 6q vertices in

the stack S(y). Note that 6n=3. Thus there exist indices i and i' with Ii-4'1>1

so that cliques C(i.1) and C(i',l) each have at least dq-2 intervals in stack

S(y). Since dq =2>1. these intervals must be primary, since secondary intervals

belonging to a pair of vertices in a C(i.j) cannot intersect. However, this is a .

contradiction because these primary intervals belong to the non-consecutive

stacks S(i) and S(i') and are therefore disjoint. Thus io(Go)>t, yet i(Go)=2.,

This result is best possible since, as we noted earlier, if i(G)=l then

i-(G)-1.

The relationship between the graph G(n.7n;g) and G(n.mo;qo) is worth not-

ing now as its own result:

Lemma 4. Given positive integers t. n. m 0 and go. there exist integers L and q

such that the following holds: If G=G(n.m;q) and f is a t-interval representa-

tion of G, then there exists an induced subgraph G' of G, isomorphic to

G(n.mo;qo). and distinct points x 1, ,xER such that x 1if (i.j;k) whenever

(i~J ;k ) v(G').•

5. Remarks on the Large Cliques

One of the most striking features of the G(n.m;q) graphs in the above proof

is their very large cliques. This feature, to an extent, is inescapable, as shown

below. We begin with a lemma.

Lernma 5. Let f:V(G)- tI be a t-interval representation of G. If depth(f)=2

. . .- .

____ ____ ____ ___ ____ ____ ____ ___ ____ _ ,__ ___



then io(G)!t.

Proof. If f is irredundant we have nothing to prove. Otherwise we remove

"superfluous" intersections as follows:

There are essentially only two ways for a pair intervals to meet in a ..-

representation with depth-2. Either one interval is contained in the second, or

else each interval contains exactly one end point of the other. If such an inter- .

section is superfluous, we modifyf in the first case by deleting the smaller

interval and in the second case by "sliding" the overlapping intervals apart. -.- -

Repeating this process for all "superfluous" intersections gives an irredundant -

representation.-

Let w(G) denote the number of vertices in G's largest clique. Although one

cannot give a bound for i 0 in terms of i alone, one can give a bound when e is

known.

Theorem 3. io(G) r (w(G)-l)i(G).

Proof. Let f be an i(G)-interval representation of G. Clearly depth(f)5r(G).

One can imagine a drawing of such a representation as occupying w(G) "layers" .-

in which each interval lies in one of the layers and meets no other interval in its

layer. Now all edges represented by intersections between a given pair of layers

can be represented in a depth-2 fashion by "recopying" the two layers in an

unused portion of the line. We do this in all possible ways.. One checks

that each layer is recopied e(G)-l times resulting in a (w(G)-l)i(G)-

representation with depth-2. By lemma 5. io(G)g(c(G)-1)i(G).-

Corollary. For triangle free graphs, i0(G) = i(G).-

. . .. . .. . . . . . . . . . . . . .
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6. r-Redundancy

Until now we have been discussing redundancy in an all-or-nothing manner.

In section 4 we saw that the graphs G(nm;q) do not have "efficient" irredun-

dant representations. However, if we allow (up to) two intervals from a vertex to

meet intervals from a neighbor, we can form an efficient (i=2) multiple interval

representation for G(n,m;q). One is therefore led to ask: if we allow a "little"

redundancy do we still adversely affect efficiency?

When we defined irredundant t-interval representations we placed the res-

triction that f (M) nf (M) may consist of at most one connected component (i.e.

is empty or is an interval). One way to allow a "little" redundancy is to place a

fixed upper bound on the number of components in f(v)f f(w). We take a

different but qualitatively equivalent approach:

For rO we say that a t-interval representation of a graph G is

r-redundant if, for all vwEV(G), at most r+1 intervals assigned to v meet

intervals assigned to w. [Note that this effectively places an upper bound of

2r+1 components in f (v)fnf (w).] This notation was chosen so that 0-redundant

and irredundant would be synonymous. We denote by it(G) the least t for which _

G has an "-redundant t-interval representation.

The following facts are obvious:

(1) i(G) - ir, I(G) ! it (G), and

(2) if i(G) ! r+I then i(G) = ir(G).

Is there an r for which ir(G)=i(G) always holds? Clearly not by the exam-

pies in section 2; those graphs have arbitrarily high redundancy. Is there an r

for which it(G) and i(G) are relatively close? The graphs G(n.7m;q) are 2-

interval graphs, hence ij(G(n.m:q))!-;2 and therefore do not answer this ques-

tion. However, by generalizing these graphs we can answer this question in the

negative. We show:

.'- '- '.. .'-.'".."- "_".-".-".- .. . .-. . .. ...-""..... ... .. . . . .
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Theorem 4. Given integers rjt with r !O and t~tr+2, there exists a graph G with

* i(G)=r+2 and i,(G)>t.

As in the proof of Theorem 2, we will make repeated use of Lemmas 2 arnd 3.

The graphs we examine are defined as follows- The graph G(n, 1n 2... ,7p

* consists of all (p~i-)-tuples of positive integers (iji.a - .i,;1c) with ijtrnj and

kc5q. We denote p-tuple s by bold letters: i= (ij. -. 4) Vertices (i;I) and (V;k')

*are adjac ent iff i=i! or else i and 1' differ in exactly one coordinate. In case p =2.

* this definition is the same as before.

Lenmma6. i(G(n1 1 n 2 .. rVq:go

Proof. For all 1_-i 1 !9n. . ~ e ~... i~~j.... ,~ edsic

integers. [There are t r fn, such integers.] Define I:V(G(n...,~;).p

* by f (i~k) is the union of the p intervals of length Lcentered at the points:
2

x("i 2.. .. ,). ~i.*, 3 . * ,~. ... X(i 1 , . .ip1 .1 ). It is immediate that i

v-w thenf (v)fwoo. On the other hand, if f (ik)flf(';k')s0 then the

intersection contains one of the integers x(i 1 . . *jI,*j,1 .. .ip) implying i

* and i' agree in all coordinates except, perhaps, coordinate j.Therefore

Notice that the representation presented above is (p -1)-redundant. This

* representation has certain special properties to which we call attention via the

following definitions:

A representation f :V(G(n l. .N,,q )) -+tI is called coordinate -j canonical

if there exist points x~i, , O i,, ,ip) on the real line so that for all

vertices (i;k) we have x (%1  i, 1  .i . ;P)Ef(i;k). The representation is

called canonical if it is coordinate-j canonical for each j with 19j!!p. Our goal

now is to show for "large" graphs G(n,, .7.t,;q) every f -interval representa-



tion is canonical on a smaller Go graph. We do this coordinate by coordinate

using arguments similar to those in the proof of Theorem 2.

Lemma 7. Given positive integers t. (ni...- en,-..1 V1 .nj+ 1 9 .. gv',. there

exist positive integers nj, q such that every i-interval representation f of 7
G =G(n1. .. n. .Npq) has the following property: there exists an induced

subgraph G' of G isomorphic to G(n,~ -. j-l.n~jl. n.q;') such that

f I V(G') is coordinate-j canonical.

Proof. Notice that in case p =2 we have exactly Lemma 4. Our proof in this gen-

eral case follows by direct analogy.

Let N=]7jn. and let n1 =(4t)Nv 1  and q =(4t)Nfq'. Let
ae elj

G=G(nj1. M. ,nJ,. 7,;q) and f:V(G)-atl be a t-interval representation. Put

*e -and 6= -L- We perform the following construction for all valuez- of the

indices i, 2 , .- 1,JjI+.. . with 1!-,:n with s 0'j. [Thus our construction

* is performed N times.]

Note that the set of all vertices of the form (ii. -. 'a-.. - -- i;k) with i1

fixed and 1~gkc-q forms a clique of q vertices we denote C(i4 ) and the union i
C(1)U.. UC(fl,) is a clique which we denote C(O) containing njq vertices.

Since f is a t-interval representation, by Lemma 2 it has depth rN~jq onC()

Hence there is a point x =(ij. ,i,.,ij - - - ,ip) such that for at least enjq

of the vertices vu in C(*) we have xcf (v). As in the proof of Theorem 2, we now

apply Lemma 3 to show that at least 6flj of the cliques C(1),. .C(nj) have at

least 6q vertices v with x Ej (v). Without loss of generality, we may assume this

occurs on cliques C(i), -. C(6nj). We therefore refocus our attention on the

*induced subgraph G(n1 . .nj-1.6nz,,nj,, .nL,;6q) and repeat this argument

*for the next choice of indices i 1. jj -I,ij+ 2. .ip with n3j- 6nj and 9q4..,
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When we are done, the parameters flj and q will each have been decreased

by a factor of 6 N giving v3 and q respectively. The resultant graph is easily'seen -:

to be coordinate-j canonical under f. •

Starting with a graph G(u1, , . gp;q') we can apply this lemma p times to

" readily prove the following:

Lemma 8. Given integers t. (v1, • ,vp;qU) there exist integers (ni,. • ,I2,;q) .

with the following property: Let G=G(nl... ,n q). For every i-interval

representation f of G there is an induced subgraph G' of G. isomorphic to

G(vj,"'" ,vp;q). such that f V(G') is canonical..

This lemma now provides the basis for proving Theorem 4.

Proof of Theorem 4. Choose parameters rzO and t r+2 as required in the

hypothesis. Let p =r+2. Choose v !p (we could have written p instead of v every-

where below, but have kept these quantities separate for clarity). Let

G'=G(v.v,''. ,v;2) (p Vs) and let G=G(n,n 2  ,TL,;q) be the graph, whose

existence is assured by Lemma 8.

By Lemma 8. i(G)!p. Suppose i.(G)gt. Let f:V(G)-,.tI be an r-redundant

t-interval representation. By Lemma 8 there is an induced subgraph isomorphic

to G' on which f is also canonical. ---

Hence there exist distinct points on the real line satisfying

i ,,)Ef(i;k) for all i and k. There are pvP-1 such

points. Next, define an i-collection to be the set of points:

•*i2 -')(l*i. i) (,2 - . L _

We claim there exists an i-collection with no two of its points appearing consecu-

tively on the real line. To show this we first remark that there are exactly V

such collections: one for each i. Next, we call an i-collection ruined if any pair

of its points appear consecutively. Now one checks that for each pair of
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consecutive x() poirts on the real line there is at most one i:-collection that is 5

ruined by that pair. Hence the number of ruined i-collections is at Mhost

piF-1 -1. Therefore. there are at least vP -pvv"1 +1 > 0 i-collections which are

not ruined. and we have proved our claim.

We now choose an 1 so that the corresponding !-collection is not ruined.

Consider the two vertices (i; 1) and (i;2). We know

~(i 1 ,.. ~.i,)Ef(i;k) for k =1,2. Also. we claim that no other x0)

point is inf(iEk). Otherwise, there exists f with x'=x(it#. 6*',(fk'

and i' disagrees with i is position j and one other position. Since x'rf (i!.k') we

have (i~k)-(i':k'), a contradiction.

It follows that f (i;Ic) for k =1.2 must consist of at least p disjoint intervals

meeting the p points x (i~.., .. ,~ Hence at least p intervals assigned to

(0i) meet intervals assigned to (i;2). But this contradicts the assumption thatf -

is r-redundant with r =p -2. Thus t(G)>t..
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